TY - BOOK AU - Gujarati,Damodar N. TI - Basic econometrics SN - 0071333452 U1 - 330.015195 22 PY - 2003/// CY - New Delhi PB - McGraw Hill N1 - Introduction; Part-1: Single-equation regression models; 1. The nature of regression analysis; 2. Two-variable regression analysis: some basic ideas; 3. Two-variable regression model: the problem of estimation; 4. Classical normal linear regression model (CNLRM); 5. Two-variable regression: interval estimation and hypothesis testing; 6. Extensions of the two-variable linear regression model; 7. Multiple regression analysis: the problem of estimation; Multiple regression analysis: the problem of inference; 9. Dummy variable regression models; Part-2: Re;axing the assumptions of the classical model; 10. Multicollinearity: what happens if the regression are correlated; 11. Heteroscedasticity: what happens if the error variance is non constant? 12. Autocorrelation: what happens if the error terms are correlated?; 13. Econometric modeling: model specification and diagnostic testing; Part-3: Topics in econometrics; 14. Nonlinear regression models; 15. Qualitative response regression models; 16. Panel data regression models; 17. Dynamic econometric models: autoregressive and distributed-lag models; Part-4: Simultaneous-equation models and time series econometrics; 18. Simultaneous-equation models; 19. The identification problems; 20. Simultaneous-equation methods; 21. Time series econometrics: some basic concepts; 22. Time series econometrics: forecasting ER -