TY - BOOK AU - Goodfellow Ian TI - Deep Learning SN - 978-0-262-03561-3 U1 - 006.31 23 N1 - Part I: Applied Math and Machine Learning Basics 2 Linear Algebra 3 Probability and Information Theory 4 Numerical Computation 5 Machine Learning Basics Part II: Modern Practical Deep Networks 6 Deep Feedforward Networks 7 Regularization for Deep Learning 8 Optimization for Training Deep Models 9 Convolutional Networks 10 Sequence Modeling: Recurrent and Recursive Nets 11 Practical Methodology 12 Applications Part III: Deep Learning Research 13 Linear Factor Models 14 Autoencoders 15 Representation Learning 16 Structured Probabilistic Models for Deep Learning 17 Monte Carlo Methods 18 Confronting the Partition Function 19 Approximate Inference 20 Deep Generative Models ER -