000 | 01111nam a22001457a 4500 | ||
---|---|---|---|
005 | 20250307093027.0 | ||
008 | 250307b |||||||| |||| 00| 0 eng d | ||
020 | _a978-0-262-03561-3 | ||
082 |
_223 _a006.31 _bGOO |
||
100 | _aGoodfellow Ian | ||
245 |
_aDeep Learning: _cIan Goodfellow, Yoshau Bengio and Aaron Courville _henglish |
||
300 |
_avi,775 p. ; _bhard bound _c8x23 cm |
||
505 | _aPart I: Applied Math and Machine Learning Basics 2 Linear Algebra 3 Probability and Information Theory 4 Numerical Computation 5 Machine Learning Basics Part II: Modern Practical Deep Networks 6 Deep Feedforward Networks 7 Regularization for Deep Learning 8 Optimization for Training Deep Models 9 Convolutional Networks 10 Sequence Modeling: Recurrent and Recursive Nets 11 Practical Methodology 12 Applications Part III: Deep Learning Research 13 Linear Factor Models 14 Autoencoders 15 Representation Learning 16 Structured Probabilistic Models for Deep Learning 17 Monte Carlo Methods 18 Confronting the Partition Function 19 Approximate Inference 20 Deep Generative Models | ||
942 |
_2ddc _cBK |
||
999 |
_c9616 _d9616 |