000 01111nam a22001457a 4500
005 20250307093027.0
008 250307b |||||||| |||| 00| 0 eng d
020 _a978-0-262-03561-3
082 _223
_a006.31
_bGOO
100 _aGoodfellow Ian
245 _aDeep Learning:
_cIan Goodfellow, Yoshau Bengio and Aaron Courville
_henglish
300 _avi,775 p. ;
_bhard bound
_c8x23 cm
505 _aPart I: Applied Math and Machine Learning Basics 2 Linear Algebra 3 Probability and Information Theory 4 Numerical Computation 5 Machine Learning Basics Part II: Modern Practical Deep Networks 6 Deep Feedforward Networks 7 Regularization for Deep Learning 8 Optimization for Training Deep Models 9 Convolutional Networks 10 Sequence Modeling: Recurrent and Recursive Nets 11 Practical Methodology 12 Applications Part III: Deep Learning Research 13 Linear Factor Models 14 Autoencoders 15 Representation Learning 16 Structured Probabilistic Models for Deep Learning 17 Monte Carlo Methods 18 Confronting the Partition Function 19 Approximate Inference 20 Deep Generative Models
942 _2ddc
_cBK
999 _c9616
_d9616